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This paper derives the relationship between the temperatures of maximum reaction rate and the equilibrium
temperatures for exothermic reactions. For a reversible reaction described by Arrhenius type rate coefficients
the relation is found to be (1/Tr,max) - (1/Teq) ) (R/(E2 - E1)) ln(E2/E1), whereR is the gas constant andE1

andE2 are the activation energies of the forward and backward reaction. The result implies that the operating
line of the maximum reaction rate will be parallel to the equilibrium line in a 1/T versus conversion diagram
when the activation energies (or enthalpy change of reaction) are constant. For systems with constant pressure,
the constant distance between the two curves is then equivalent to a constant driving force of the reaction,
∆G/T. Thus, we have shown that a recently developed principle for an energy efficient process design,
called equipartition of forces, can be applied also near the maximum reaction rate for elementary, exothermic
reactions with Arrhenius’ type kinetics at constant pressure.

Introduction

The search for maximum reaction rates is one of the classic
quests in chemical engineering. The determination of the
optimum temperature profile for a reactor is an important part
of this search. Today this temperature profile is often found
either by computer optimization techniques or by experimental
procedures. Recent experimental and numerical results, how-
ever, indicate that an analytical solution might exist, and these
constituted a major motivation for this work. Ten years ago,
for instance, both Dybkjaer and Gam1 and Månsson and
Andresen2 presented an operating line (reaction trajectory) with
maximum reaction rate in the temperature-conversion space for
the synthesis of ammonia and pointed out that it was nearly
parallel to the equilibrium curve; see Figure 1. More recently,
Schön and Andresen3 presented a numerical study of three
example reactions on the formnA ) mB. They observed that
the difference between the inverse temperature of a mixture at
equilibrium and the inverse temperature of maximum reaction
rate (for the same mixture) was nearly constant.Equilibrium
temperaturewas here defined to be the temperature at which
the reactive mixture would be in equilibrium. The average
difference∆(1/T) between the equilibrium line and the line of
the maximum reaction rate varied with 2-9% in the three
example reactions they studied. They thus concluded that
“clearly, if and when it can be shown that optimality implies a
constant∆(1/T), this optimality criterion could then be used to
determine the optimal path for those systems of chemical
reactions that do not yield easily to optimization methods like
the one [they] used. This will be of special importance since
for general chemical systems it is considerably easier to
determine the curve of equilibrium values than the actual optimal
paths.”

At the same time Sauar et al.4 published a new physical
principle for process optimization, called equipartition of forces.
This principle states thatminimum entropy productionin a
process unit with a given size and yield can be achieved when
the thermodynamic forces (see, e.g., ref 5) are uniformly
distributed over the transfer area (for heat and charge conduction,
mass diffusion) or system volume (rate-controlled chemical
reactions). Formulated in another way, such uniformly distrib-
uted driving forces in a process were also shown to give
maximum yieldfor a given entropy production and process size.
For a chemical reactor6 with a rate-controlled chemical reaction
this means that a constant affinity of reaction divided by the
absolute temperature (eq 1) in all parts of the reactor and at all
times specifies the optimumcombinations (or trade-offs)
between conversion and entropy production. The validity of
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Figure 1. Equilibrium curve and the curve of maximum reaction rate
(called optimum) for the ammonia synthesis.1 Reproduced with the
permission from ref 1. Copyright 1985 American Institute of Chemical
Engineers.
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the result (1), however, was restricted to systems close to
equilibrium.

For systems with constant pressure the affinity of the reaction
equals the change in Gibbs energy for the reaction. Assuming
constant pressure, Sauar et al.6 integrated the Gibbs-Helmholtz
equation from the equilibrium temperature to the operating
temperatureTop and found that

where∆G is the change in the Gibbs energy of reaction,∆H is
the enthalpy change of reaction,Teq is the equilibrium temper-
ature of a mixture, andTop is the operating temperature. Thus,
they concluded that a chemical reactor with an optimal trade-
off between entropy production (which is proportional to the
energy loss) and conversion should be designed with a tem-
perature profile as described by eq 2 with constant∆G/T. We
call such temperature profilesisoforceoperating lines. In cases
where the∆H of the reaction is independent of temperature
and concentrations, eq 2 will thus specify isoforce operating
lines with a constant difference in 1/T between the equilibrium
temperature and the operating temperature. Forexothermic
reactions such trade-offs between entropy production and
reaction rate only exist between the equilibrium line and the
line of maximum reaction rate (see Figure 1). At temperatures
below the curve of the maximum reaction rate there is nothing
to gain since entropy production increasesand reaction rate
decreases with decreasing temperature in this region. At
temperatures above the equilibrium temperature the reaction
goes in the reverse direction.

The derivation of equipartition of forces was based on linear
phenomenological equations:

which for chemical reactions are valid only near equilibrium.r
is the reaction rate, andl is a kinetic (phenomenological)
coefficient. The results in this paper, however, will demonstrate
that eq 1 can be used to optimize conversion also near the
maximum reaction rate for elementary exothermic reactions
occurring at constant pressure.

The main derivation will be similar to Denbigh,9 but his work
was apparently unknown to Maanson and Andresen2 and Scho¨n
and Andresen.3 The current work extends the results reported
by Denbigh by specifying how the different experimentally
determined activation energies shall be applied and by relating
the results to a constant∆rG/T for the reaction. The results are
also of more practical interest now as more activation energies
have been experimentally determined.

The mathematical results will be derived from Arrhenius type
rate equations and specify the difference between the equilibrium
temperatures and the temperatures of maximum reaction rates.
Thus, the problem posed more or less explicitly by Scho¨n and
Andresen, Dybkjar and Gam, and others will be solved.

Temperature of the Maximum Reaction Rate

We first assume a reaction in liquid phase:

with the reaction rates

for the forward and backward reactions,r1 and r2. E1 andE2

are the activation energies for the forward and backward
reaction, andA1 andA2 are the frequency factors. We will prove
here that the temperature of the maximum reaction rate for all
possible concentrations will be found in an almost constant
distance,∆(1/T), away from the equilibrium temperature. An
illustration of the behavior of the reaction rates (eq 5) with
respect to the temperatureT is given in Figure 2.

Reaction 4 is at equilibrium whenr1 ) r2. Thus, for a mixture
at equilibrium, the relation betweenCB, CD, andTeq is

The temperature of the maximum reaction rate for the same
concentrationsCB andCD is easily found by differentiation of
the net reaction rater1 - r2 with respect toT-1:

Equation 7 can be further reduced to

and taking the logarithms and rearranging give

We assume in the following that the kinetic parameters (A1,
A2, E1, E2) can be regarded as constants between the temper-
aturesTr,max andTeq. The difference between the temperature
of the maximum reaction rate,Tr,max and the equilibrium
temperature,Teq, can now be found directly by subtracting eq
6 from eq 9, resulting in

For elementary reactions,E2 - E1 is equal to the negative
enthalpy change of the reaction,-∆H. The∆H, E1, andE2 of
reaction generally exhibit some temperature dependency and
are weakly dependent upon the concentrations. In many cases,
however, they will be approximately constant over the temper-
ature and concentration range of interest. For exothermal
reactions with Arrhenius type rate expressions as in eq 5, the
result of (10) provides a direct method for maximizing reaction
rates in non-isothermal, rate-controlled chemical reactors with
one single reaction. Furthermore, the result is easy to apply

Figure 2. Forward and backward reaction ratesr1 andr2 as a function
of temperatureT. The figure is drawn rather than calculated in order
to enlarge important points.
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since the only required information is the equilibrium line and
the activation energies.

A temperature of maximum reaction rate for exothermal
reactions exists because a temperature decrease for this type of
reactions implies both increasing driving forces and reduced
kinetics. At a certain temperature these two effects are equal,
and thus there exists a temperature of maximum reaction rate.
For endothermal reactions there is no temperature of maximum
reaction rate since both driving force and kinetics increase when
the temperature increases.

More Complex Reactions

It is straightforward to generalize the result of (10) for any
reaction:

with a reaction rate of the form

In order to determine the equilibrium temperature, we again
set the net reaction rate,r, equal to zero. The temperature of
the maximum reaction rate is similarily found by differentiating
eq 12 with respect toT-1 and setting dr/dT-1 ) 0. For a
particular concentration of reactants and products, the difference
between the inverse of the temperatures thus becomes

Hence, the conclusions drawn above are valid also for more
complex reaction mechanisms on the form of (12). The
trajectory of the maximum reaction rate will still be found in a
constant distance,∆(1/T), away from the equilibrium line, and
its exact location can be found from the activation energies in
the rate expression.

Gas-Phase Reaction at Constant Pressure

For gas-phase reactions in reactors with constant pressure,
the mathematical relationship between the temperature of the
maximum reaction rate and the equilibrium temperature depends
on the experimental basis of the rate coefficients. There are
two common Arrhenius type rate expressions used for gas-phase
reactions like (11):

which is perhaps the most common (see, e.g., ref 7), and

which is the one used by Scho¨n and Andresen.3 These can both
describe the same reaction, but there is a major difference
between them with regard to the temperature dependency when
the reaction is carried out at constant pressure. In eq 14 only
the rate coefficients themselves will vary with temperature. (The
partial pressures are merely the product of mole fractions and
total pressure and are not influenced by a varying temperature.)
Thus, for reaction rates based on partial pressures in (14), the
relationship between the temperature of the maximum reaction
rate and the equilibrium temperature becomes exactly the same
as in eq 13 for any given partial pressure of reactants and
products.

In eq 15 also the concentrations vary with temperature since
the number of moles per volume changes with changing
temperature. The relationship between the maximum reaction
rate and the equilibrium temperature therefore must reflect these
changes and becomes somewhat more complex. The complete
derivation for this case is given in Appendix 1.

We thus conclude that eq 13 with rate expression 14
generalizes the numerical results obtained by Månsson and
Andresen,2 Dybkjaer and Gam,1 and Scho¨n and Andresen3 by
providing an analytical answer to their problem. According to
eq 13, the difference between the two inverse temperatures
should then mainly be related to the variation in the enthalpy
of reaction (-∆H ) E2 - E1 for elementary reactions) over
the composition space. This is in agreement with the results
presented by Scho¨n and Andresen who report an 8% standard
deviation in the distance (1/T) as the ammonia synthesis
proceeds from high to low temperatures (at constant pressure).
In the same temperature interval, the enthalpy of reaction varied
from -55.9 kJ/mol at 1200 K to-48.1 kJ/mol at 400 K. This
interpretation is further supported by Scho¨n and Andresens’
results for the reaction N2O4 ) 2NO2. For this system they
reported a 4.2% standard deviation in the optimal∆(1/T), while
∆H varies similarily less, from 21.6 to 20.7 kJ/mol.8

In a plug-flow reactor, any volume change of reaction (∑ni

* ∑mi) will speed up or slow down the gas flow. Thus, the
temperature as a function of spatial coordinate will be affected.
The parameters in eq 14, however, will not be affected, and
relation 13 still holds true. In applying eq 13 over large
temperature and concentration ranges, however, one should be
aware that the kinetic expression may change if the temperature,
pressure, and/or concentrations vary largely.

Gas-Phase Reaction in a Constant Volume

For a gas-phase reaction in a vessel with constant volume,
the variation of temperature will affect not only the kinetic
constants but also the pressure of the gas. Considering again
the two forms of the rate expression (14, 15), we easily see
that, in the pressure based equation, both the kinetic coefficients
and the partial pressures will be temperature dependent. In the
concentration based rate expression, however, only the kinetic
coefficients will exhibit temperature dependency. Reducing the
temperature of a reactive mixture from the equilibrium tem-
perature to a lower temperature for instance (without allowing
it to react) will change neither the amount of moles nor the
volume of the reactor. Only the pressure will fall. Thus for
concentration based kinetic coefficients, and for a given
concentration of reactants and products, the relationship between
the temperature of the maximum reaction rate and the equilib-
rium temperature will be

whereE1′ and E2′ are the activation energies associated with
the kinetic expression given by (15). This expression is then
equivalent to (13).

For the pressure based rate expression (14), however, the
relationship between the inverse temperatures is somewhat more
complex, and the derivation is given in Appendix 2. Again,
the pressure based rate expression can always be replaced by a
concentration based rate expression as long as the kinetic
coefficients are known.

Thus, the result of (13) is still valid for activation energies
belonging to eq 15, while activation energies determined on a
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pressure basis must be used according to Appendix 2. As is
shown in the appendix, however, the difference is rather
marginal.

In general, a volume change of reaction (∑ni * ∑mi) may
imply major pressure changes during the course of operation.
Such pressure changes may affect the size of the activation
energiesE1′ andE2′ in eq 15 and hence also in the result (16).
The pressure changes will also change the equilibrium temper-
ature of the reactive mixtures, but relation 16 between the
temperature of the maximum reaction rate, and the equilibrium
temperature will not be much affected unless the reaction
mechanism itself changes.

Maximum Reaction Rates at a Constant Thermodynamic
Driving Force

The optimization principle equipartition of forces was derived
by the use of linear phenomenological equations. These are
only valid near equilibrium for chemical reactions. Thus, one
should expect that constant thermodynamic driving forces
according to eq 1 would only be able to predict optimal
combinations of (low) entropy production rate and (high)
conversion near equilibrium. However, for elementary reac-
tions, E2 - E1 can be replaced by-∆H in eq 13, and a
rearrangement of (13) gives an expression with a right hand
side equal to eq 2 when the reactor is operated at temperatures
Top equal to the temperatures of the maximum reaction rate,
Tr,max:

In most cases, the left sideR(ln(E2/E1)) will be close to
constant. Thus, in a reactor with constant pressure, the trajectory
of the maximum reaction rate calculated from eq 13 can also
be calculated from eqs 1 and 2 by choosing the proper driving
force ∆G/T ) R(ln(E2/E1)). Unless there are large variations
in the activation energies, the equipartition of forces principle4,6

can therefore be applied also near its boundary condition of
the maximum reaction rate and not only close to equilibrium
for elementary, exothermic reactions occurring at constant
pressure. Whether it can be applied far from equilibriumin
generalremains to be seen.

Conclusions

We have derived an analytical relationship between the
equilibrium temperature and the temperature of the maximum
reaction rate for exothermal reactive mixtures with Arrhenius
type rate equations. The result implies that the trajectory of
the maximum reaction rate is approximately parallel to the
equilibrium line in a conversion versus inverse temperature
diagram. The trajectory can be calculated from knowledge of
the equilibrium line and the activation energies only. Thus,
future optimization of temperature profiles in chemical reactors
have been simplified. The constant distance between the two
curves is also equivalent to an approximately constant driving
force, ∆G/T, for elementary reactions. Thus, we have also
shown that the recently developed optimization principle called
equipartition of forces can be applied near maximum reaction
rates for exothermic elementary reactions occurring at constant
pressure.

List of Symbols. A ) affinity of reaction;Ai ) Arrhenius’
frequency factors;B, D ) molecules;C ) concentration;Ei )
activation energies;∆G ) change in Gibbs energy for a reaction;
∆H ) change in enthalpy for a reaction;ki ) kinetic coef-

ficients; P ) pressure;R ) gas constant;T ) absolute
temperature;l ) phenomenological coefficient;mi, ni )
stochiometric coefficients;r ) reaction flux/rate.
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Appendix 1: Concentration Based Rate Expressions for
Reactions Occurring at Constant Pressure

For rate expressions based on concentrations (15), both the
kinetic coefficients and the concentrations will vary with
variations in pressure. Assuming ideal gas law, the concentra-
tions Ci are

while the concentrations at the equilibrium temperature are

sincePi,eq ) Pi at constant pressure and given mole fractions.
Thus, reaction rate 15 becomes

where

Taking the differential dr/dT-1 equal to zero gives

Taking the logarithm and rearranging

Equation 24 was not solved explicitly forTr,max since that
would hinder the comparison with the equilibrium temperature.
The equilibrium temperature is derived in the same way, giving
the difference

between the inverse temperature of the maximum reaction rate
and the inverse temperature of equilibrium.

When there is a volume increase associated with the reaction
(M > N), the fraction on the right side of eq 25 will decrease
if M/N > E2/E1. ThusTr,max calculated according to (25) will
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be higher than if it was calculated according to (13). (For
exothermic reactionsE2 is always larger thanE1.)

For N ) M or M/N < E2/E1, the total fraction on the right
side of eq 25 will be increased. In such casesTr,max calculated
according to (25) will be lower than if it was calculated
according to (13).

Appendix 2: Pressure Based Rate Expressions for
Reactions Occurring in a Constant Volume

Consider reaction 11 to be a gas-phase reaction in a vessel
with fixed volume.

Reaction rate 14 can then be written

wherePt is the total pressure in the vessel. We assume that
ideal gas law can be applied and that all activity coefficientsγi

) 1. The temperature of maximum reaction rate is again found
from dr/dT-1 ) 0, which gives

where

Taking the logarithms and rearranging gives

while the equilibrium temperature is

Equation 30 was not solved explicitly forTr,max since that
would hinder the comparison with (31). As can be seen, the
inverse distance between the temperature of equilibrium and
the temperature of the maximum reaction rate is still similar to
(13) but not equal.

When N ) M, the same (positive) number is added to the
numerator and the denominator on the right side of eq 32, the
total fraction will be reduced. Thus,Tr,maxcalculated according
to (32) will be higher than if it was calculated according to
(13).

When there is a volume reduction associated with the reaction
(N > M), the denominator will increase more than the
numerator, the fraction will be reduced, andTr,maxmust be higher
than according to eq 13.

When there is a volume increase associated with the reaction
(M > N), however, the fraction on the right side of eq 32 will
increase ifM/N > E2/E1, thereby contributing to a reducedTr,max

as compared with eq 13.
The importance of this deviation term is significant when

the activation energies are similar in size (e.g. when∆H ) E2

- E1 is small). For a hypothetical reaction with a low enthalpy
change of reaction (E2 ) 40 kJ/mol,E1 ) 30 kJ/mol,M ) 2,
and N ) 4), the additional term varied from 1.2 K at an
equilibrium temperature of 400 K up to 4.5 K at equilibrium
temperatures around 1500 K. Exchanging the values of M and
N in the last case reduced the size of the deviation term by
more than 60%.

For large enthalpies of reaction, however, the difference
between (13) and (32) appears to be insignificant. For a reaction
with E2 ) 170 kJ/mol,E1 ) 60 kJ/mol,M ) 2, andN ) 4, the
additional term in eq 32 amounts to a maximum 0.3 K over a
large temperature range (400 K< Teq < 1200 K).
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